The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X 1 1 X X X X 1 1 X X X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 0 X^3+X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3 X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 0 X^3 0 X^3 0 0 0 X^3 0 X^3 0 0 X^2 X^3 X^3 X^2 X^3 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 X^3+X^2 X^2 X^3 X^3+X^2 X^2 X^3 X^3 X^3 X^3+X^2 X^2 X^3+X^2 X^2 0 X^3 0 X^3 X^3+X^2 X^2 X^3+X^2 X^2 0 X^3 X^3+X^2 X^2 0 0 0 0 X^3 0 0 0 X^3 0 0 X^3 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 0 0 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 0 0 X^3 0 0 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 0 0 0 X^3 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 0 X^3 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 X^3 X^3 0 0 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 0 0 X^3 X^3 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 0 0 X^3 0 X^3 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 X^3 X^3 0 0 generates a code of length 92 over Z2[X]/(X^4) who´s minimum homogenous weight is 90. Homogenous weight enumerator: w(x)=1x^0+23x^90+30x^91+408x^92+32x^93+8x^94+7x^96+1x^122+2x^123 The gray image is a linear code over GF(2) with n=736, k=9 and d=360. This code was found by Heurico 1.16 in 0.922 seconds.